
Your Protocol, Your Rules
Build and Launch a Custom Data Protocol
on Frequency

Web3 Summit 2025

What is Frequency?

Abstract User
Identity

What is Frequency?

Service
Delegation

Custom Data
Protocols

Stake-based
Economics

Details

Abstract User Identity
● Abstract accounts (MSAs) with a 64-bit Id

● User’s wallet provides the locus of control

● Optional Account Data: handle, permissions, etc…

● Usually coinless, even for direct revocation

actions

● Supports receiving tokens

● Users authorize

○ One-time

○ Ongoing Delegation

● Providers interact

Service Delegation

● Discovery method

● Storage type

● Structure definition

Custom Data Protocols

● Capacity offers renewable, rate-limited access to

perform any Capacity-enabled transaction.

● Predictable costs allow companies to provide

services to their customers

● Shared data is shared value. The value of data

increases as the amount of data increases.

Stake-based Economics

Abstract User
Identity
On-chain

account system
controlled by the

user

Refillable
Capacity allows

Providers to
service users

What is Frequency?

Service
Delegation

Users can
delegate actions

to service
Providers

Custom Data
Protocols

Protocols are
defined via

schemas and
storage options

Stake-based
Economics

Goal: Build, launch, and use a custom
data protocol on Frequency Testnet

Custom Data Protocols

Frequency Data Questions
● Discovery: How do I want this data accessed?

● Storage: Where is the data stored?

● Schema: How is this data structured?

Frequency Data Discovery
Options

Frequency Data Discovery Options
● Account Data

○ Specific data about the account
○ Example: Handles
○ Chain-defined

Frequency Data Discovery Options
● Account Data
● User-Centric Data

○ I want to discover something about this user
○ Example: Social Graph
○ Schema-defined

● Time-Centric Data
○ I want to know what happened at a point in time
○ Example: Content References
○ Schema-defined

Frequency Data Storage Options

Frequency Data Storage Options
● On-Chain

● Off-Chain

On-Chain Data Storage
● Very Limited

○ Encrypted Data
○ Public Key and Address Data
○ Relationship Data

● Generally Computer-Driven

Off-Chain Data Storage
● Chain References: IPFS
● Secondary References: Specification-Defined
● Batching

○ Stream of Messages
○ Pointers and References

● Wide-Open, User-Driven Data

Frequency Data Schemas

Frequency Data Schemas
● Every message on Frequency has a Schema
● Schemas answer three questions:

● Every message on Frequency has a Schema
● Schemas answer three questions:

○ Meaning: How does this data connect to other data?

Frequency Data Schemas

Frequency Data Schemas
● Every message on Frequency has a Schema
● Schemas answer three questions:

○ Meaning: How does this data connect to other data?
○ Structure: How can I deserialize this data?

Frequency Data Schemas
● Every message on Frequency has a Schema
● Schemas answer three questions:

○ Meaning: How does this data connect to other data?
○ Structure: How can I deserialize this data?
○ Specification: What are the rules for this data?

Frequency Data Schemas
● Every message on Frequency has a Schema
● Schemas answer three questions:

○ Meaning: How does this data connect to other data?
○ Structure: How can I deserialize this data?
○ Specification: What are the rules for this data?

● Permissions are connected to Schemas
○ Signature-Based Permission
○ Delegation-Based Permission

Frequency Data Schemas
● Every message on Frequency has a Schema
● Schemas answer three questions:

○ Meaning: How does this data connect to other data?
○ Structure: How can I deserialize this data?
○ Specification: What are the rules for this data?

● Permissions are connected to Schemas
○ Signature-Based Permission
○ Delegation-Based Permission

● Other Settings & Options
○ Discovery: How do I want this data accessed?
○ Storage: Where do I retrieve this data?

Frequency data flows follow
standard patterns

User:
Create Data

Application:
Process Data

Frequency:
Distribute Data

Others:
Consume Data

Examples Time!

Pieces to Answer
● Schema

○ Meaning
○ Structure
○ Specification

● Permissions
● Discovery
● Storage

Token Addresses Protocol
● Schema

○ Meaning: Addresses the user controls on other chains
○ Structure: Avro
○ Specification: New, Uses SLIP-0044

● Permissions: One-time Signature Delegation
● Discovery: User-Indexed
● Storage: On-chain, Itemized

Token Addresses Protocol

Tangent: Why not just use a
smart contract?

DSNP (Decentralized Social Media Protocol)
● Frequency was based on DSNP
● Has multiple, multi-layered Schemas
● Social Graph?

○ On-chain, Stateful Storage (Paginated & Itemized)
● Content?

○ Off-chain, IPFS, Parquet Batches

Public
Follows

Private
Connections

DSNP Public
Content

AT Protocol
● Aka BlueSky
● Publishing an independent “Firehose”
● Offers Historical Replay
● Currently on Testnet
● Three Schemas

○ Account
○ Identity
○ Commits

AT Protocol Example Identity Schema

Build Together Time!

OpenTimestamps
● https://opentimestamps.org
● “A timestamp proves that a message

existed prior to some point in time;
timestamps are occasionally referred to
as ‘proofs-of-existence’. Being able to
prove that data existed prior to a point in
time is surprisingly useful.”

● Deployed right now on Bitcoin

OpenTimestamps: Cost for Three Calendars
● Average time between transactions in the last week:

○ 2.47 hours
○ 4.00 hours
○ 8.84 hours

● Fees used in the last week:
○ 0.00015240 BTC
○ 0.00007334 BTC
○ 0.00007202 BTC
○ Weekly Total: 0.00029776 BTC / $35.07 USD
○ Annualized on-chain costs: $1,823.64 USD

OpenTimestamps: Cost for Three Calendars
● Average time between transactions in the last week:

○ 1 hour
○ ~8,766 Timestamp Rollups a year

■ 24 per day
● Staking:

○ ~0.106 Capacity per Rollup
○ ~2.544 Capacity per Day
○ 50·2.544 = ~128 FRQCY Staked (50:1 currently)

OpenTimestamps: Cost for Three Calendars
● Average time between transactions in the last week:

○ 3 minutes
○ 175,320 Timestamp Rollups a year

■ 480 per day
● Staking:

○ ~0.106 Capacity per Rollup
○ ~51 Capacity per Day
○ 50·51 = ~2550 FRQCY Staked (50:1 currently)

OpenTimestamps: Questions
● Discovery: How do I want this data accessed?

● Storage: Where is the data stored?

● Schema: How is this data structured?

● Discovery

○ Time-based or User-based?

OpenTimestamps: Questions

OpenTimestamps: Questions
● Discovery: Time-based

● Storage

○ Has aggregation already

○ Single “Item” per time slot per calendar

○ Example (32 bytes):
2043d2463ed68083eae3d101aa3aa903435bd2c002d1d23df644b25bd7a4bda338

○ Suggestion: Avro, On-Chain

OpenTimestamps: Questions
● Discovery: Time-based

● Storage: Avro, On-Chain

● Schema:

○ Raw Schema Type? (Not currently available)

○ Avro

OpenTimestamps Avro Schema

OpenTimestamps: Questions
● Discovery: Time-based

● Storage: Avro, On-Chain

● Schema:

○ Data: [{name: "commitment", type: "bytes"}]

○ Permissions: None

OpenTimestamps: Make It!
● Testnet Faucet

 faucet.testnet.frequency.xyz

● Extrinsic

 schemas.createSchemaV3

OpenTimestamps: Make It!
● Testnet Faucet

 faucet.testnet.frequency.xyz

● Extrinsic

 schemas.createSchemaV3

● Mine

 Id: 16296

Provider Required!
● Sending messages on Frequency requires you to

be registered as a “Provider”

(a provider of message sending services)

● Follow the steps: https://provider.frequency.xyz

OpenTimestamps: Use It!
● Encoding

 wilwade.github.io/avro-json/

● Extrinsic (via your Provider account)
 messages.addOnchainMessage

● Mine
 Id: 16296
 Data:
0x422043d2463ed68083eae3d101aa3aa90343
5bd2c002d1d23df644b25bd7a4bda338

OpenTimestamps: Use It!
● Extracting

 wilwade.github.io/avro-json/

● RPC
 messages.getBySchemaId

● Mine
 Id: 16296
 Block Range: 5333500-5333549
 Page Size: 1

Interjection:
OpenTimestamps “Native”?

OpenTimestamps: Frequency Native?
● Use IPFS to keep the list of all timestamps instead of

using a Merkle root

● Offer direct-to-user timestamping on chain

● Other ideas?

Build Your Own!

Build Your Own References
● https://wilwade.github.io/avro-json/

● Extrinsic: schemas.createSchemaV3

● RPC: messages.getBySchemaId

● Frequency Schema Docs:
https://frequency-chain.github.io/frequency/pallet_schemas

●

Start Building!

www.frequency.xyz

docs.frequency.xyz

github.com/frequency-chain

slides.wilwade.com

